114 research outputs found

    Application of finite-element methods to dynamic analysis of flexible spatial and co-planar linkage systems, part 2

    Get PDF
    An approach is described to modeling the flexibility effects in spatial mechanisms and manipulator systems. The method is based on finite element representations of the individual links in the system. However, it should be noted that conventional finite element methods and software packages will not handle the highly nonlinear dynamic behavior of these systems which results form their changing geometry. In order to design high-performance lightweight systems and their control systems, good models of their dynamic behavior which include the effects of flexibility are required

    Dynamics of flexible multi-body mechanisms and manipulators. Part 1: An overview

    Get PDF
    Flexibility can be a major limitation to the performance of high performance conventional machine systems. The current status of robotic manipulators is limited by the effects of system flexibility. The status of current commercial robots, anticipated development in 5 and 10 years is outlined

    The Design, Planning and Control of Robotic Systems in Space

    Get PDF
    In the future, robotic systems will be expected to perform important tasks in space, in orbit and in planetary exploration. In orbit, current technology requires that tasks such as the repair, construction and maintenance of space stations and satellites be performed by astronaut Extra Vehicular Activity (EVA). Eliminating the need for astronaut EVA through the use of space manipulators would greatly reduce both mission costs and hazards to astronauts. In planetary exploration, cost and logistical considerations clearly make the use of autonomous and telerobotic systems also very attractive, even in cases where an astronaut explorer might be in the area. However, such applications introduce a number of technical problems not found in conventional earth-bound industrial robots. To design useful and practical systems to meet the needs of future space missions, substantial technical development is required, including in the areas of the design, control and planning. The objectives of this research program were to develop such design paradigms and control and planning algorithms to enable future space robotic systems to meet their proposed mission objectives. The underlying intellectual focus of the program is to construct a set of integrated design, planning and control techniques based on an understanding of the fundamental mechanics of space robotic systems. This work was to build upon the results obtained in our previous research in this area supported by NASA Langley Research Center in which we have made important contributions to the area of space robotics

    Dielectric Elastomer Actuated Systems and Methods

    Get PDF
    The system of the present invention includes an actuator having at least two electrodes, an elastomeric dielectric film disposed between the two electrodes, and a frame attached to the elastomeric dielectric film. The frame provides a linear actuation force characteristic over a displacement range. The displacement range is preferably the stroke of the actuator. The displacement range can be about 5 mm and greater. Further, the frame can include a plurality of configurations, for example, at least a rigid members coupled to a flexible member wherein the frame provides an elastic restoring force. In preferred embodiments, the rigid member can be, but is not limited to, curved beams, parallel beams, rods and plates. In a preferred embodiment the actuator can further include a passive element disposed between two flexible members such as, for example, links to tune a stiffness characteristic of the actuator. The passive element can be a bi-stable element. Further, the actuator can include a plurality of layers of the elastomeric dielectric film integrated into the frame. The elastomeric film can be made of different materials such as, for example, acrylic, silicone and latex

    A Kinematic Approach to Determining the Optimal Actuator Sensor Architecture for Space Robots

    Get PDF
    Autonomous space robots will be required for such future missions as the construction of large space structures and repairing disabled satellites. These robots will need to be precisely controlled. However, factors such as manipulator joint/actuator friction and spacecraft attitude control thruster inaccuracies can substantially degrade control system performance. Sensor-based control algorithms can be used to mitigate the effects of actuator error, but sensors can add substantially to a space system’s weight, complexity, and cost, and reduce its reliability. Here, a method is presented to determine the sensor architecture that uses the minimum number of sensors that can simultaneously compensate for errors and disturbance in a space robot’s manipulator joint actuators, spacecraft thrusters, and reaction wheels. The placement and minimal number of sensors is determined by analytically structuring the system into “canonical chains” that consist of the manipulator links and spacecraft with force/torque sensors placed between the space robot’s spacecraft and its manipulators. These chains are combined to determine the number of sensors needed for the entire system. Examples of one- and two-manipulator space robots are studied and the results are validated by simulation

    A Base Force/Torque Sensor Approach to Robot

    Get PDF
    Experimental results presented show that an accurate estimation of inertia parameters is attainable. Since the sensor is external to the manipulator, the same sensor can be used for parameter estimation for a number of different systems

    Elastomeric actuator devices for magnetic resonance imaging

    Get PDF
    The present invention is directed to devices and systems used in magnetic imaging environments that include an actuator device having an elastomeric dielectric film with at least two electrodes, and a frame attached to the actuator device. The frame can have a plurality of configurations including, such as, for example, at least two members that can be, but not limited to, curved beams, rods, plates, or parallel beams. These rigid members can be coupled to flexible members such as, for example, links wherein the frame provides an elastic restoring force. The frame preferably provides a linear actuation force characteristic over a displacement range. The linear actuation force characteristic is defined as .+-.20% and preferably 10% over a displacement range. The actuator further includes a passive element disposed between the flexible members to tune a stiffness characteristic of the actuator. The passive element can be a bi-stable element. The preferred embodiment actuator includes one or more layers of the elastomeric film integrated into the frame. The elastomeric film can be made of many elastomeric materials such as, for example, but not limited to, acrylic, silicone and latex

    Manipulation in MRI devices using electrostrictive polymer actuators: with an application to reconfigurable imaging coils

    Full text link
    Abstract- MRI (Magnetic Resonance Imagining) is a powerful medical diagnostic tool. Its value would be greatly increased if it was possible to physically manipulate objects within the MRI during imaging. However, the extraordinarily strong magnetic fields used by the MRI make conventional electromagnetic components, such as actuators and sensors, unusable. In this paper, it is shown that devices constructed using binary polymer based actuators, called Electrostrictive Polymer Actuators (EPAM) are able to function effectively within the MRI without degrading its imaging performance. These actuators eliminate the need for conventional electromagnetic actuators and their associated electronics. The binary nature of the actuators eliminates the need for feedback sensors to control the devices motion. The basic concept called Digital Mechatronics is briefly summarized in this paper. Its application to a reconfigurable MRI surface-imaging coil (RMIC) is also presented. Experimental results are presented that show the EPAM RMIC is completely compatible in the MRI and can be used to enhance the diagnostic capabilities of MRI. The paper also suggests other applications of binary EPAM based actuators for use in MRI systems
    corecore